五月婷网站,av先锋丝袜天堂,看全色黄大色大片免费久久怂,中国人免费观看的视频在线,亚洲国产日本,毛片96视频免费观看

上海端懿電氣科技有限公司

主營(yíng)產(chǎn)品: SF6氣體定量泄露報(bào)警系統(tǒng)-SF6紅外雙波定量檢漏儀

12

聯(lián)系電話

13918237518

您現(xiàn)在的位置: 首頁(yè)> 公司動(dòng)態(tài)> 大數(shù)據(jù)分析技術(shù)及其解決方案

40A直流電阻測(cè)試儀

10A直流電阻測(cè)試儀

瓦斯繼電器校驗(yàn)儀

三相電能表校驗(yàn)儀

三相微機(jī)繼電保護(hù)測(cè)試儀

變頻互感器測(cè)試儀

光數(shù)字繼電保護(hù)測(cè)試儀

三倍頻發(fā)生器

法國(guó)CA儀器儀表

美翠儀表系統(tǒng)

電力測(cè)試設(shè)備系列

端懿自主儀表系列

安全滑觸線系列

電力安全工器具系列

絕緣/云母制品

光通信測(cè)試儀器系列

優(yōu)利德儀表系列

多一儀表系列

銥泰儀表系列

華盛昌儀表系列

勝利儀表系列

泰克曼儀表系列

華儀儀表系列

泰仕儀表系列

直流高壓發(fā)生器

地下管線探測(cè)儀

三相直流電阻測(cè)試儀

溫升大電流系統(tǒng)

公司信息

聯(lián)人:
高先生
話:
86-021-69973262
機(jī):
13918237518
真:
86-021-69973162
址:
上海市嘉定區(qū)張掖路355弄
編:
210800
個(gè)化:
www.duanyi1718.com
網(wǎng)址:
www.duanyi1718.com
鋪:
http://m.yimoshopping.cn/st261879/
給他留言

大數(shù)據(jù)分析技術(shù)及其解決方案

2015-5-27  閱讀(1177)


*,大數(shù)據(jù)已經(jīng)不簡(jiǎn)簡(jiǎn)單單是數(shù)據(jù)大的事實(shí)了,而zui重要的現(xiàn)實(shí)是對(duì)大數(shù)據(jù)進(jìn)行分析,只有通過分析才能獲取很多智能的,深入的,有價(jià)值的信息。那么越來越多的應(yīng)用涉及到大數(shù)據(jù),而這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長(zhǎng)的復(fù)雜性,所以大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說是決定zui終信息是否有價(jià)值的決定性因素?;谌绱说恼J(rèn)識(shí),大數(shù)據(jù)分析普遍存在的方法理論有哪些呢?

一、大數(shù)據(jù)分析的五個(gè)基本方面
1. Analytic Visualizations(可視化分析)
不管是對(duì)數(shù)據(jù)分析專家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具zui基本的要求??梢暬梢灾庇^的展示數(shù)據(jù),讓數(shù)據(jù)自己說話,讓觀眾聽到結(jié)果。

2. Data Mining Algorithms(數(shù)據(jù)挖掘算法)
可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點(diǎn)分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價(jià)值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。

3. Predictive Analytic Capabilities(預(yù)測(cè)性分析能力)
數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預(yù)測(cè)性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測(cè)性的判斷。

4. Semantic Engines(語(yǔ)義引擎)
我們知道由于非結(jié)構(gòu)化數(shù)據(jù)的多樣性帶來了數(shù)據(jù)分析的新的挑戰(zhàn),我們需要一系列的工具去解析,提取,分析數(shù)據(jù)。語(yǔ)義引擎需要被設(shè)計(jì)成能夠從“文檔"中智能提取信息。

5. Data Quality and Master Data Management(數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理)

數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理是一些管理方面的*實(shí)踐。通過標(biāo)準(zhǔn)化的流程和工具對(duì)數(shù)據(jù)進(jìn)行處理可以保證一個(gè)預(yù)先定義好的高質(zhì)量的分析結(jié)果。

假如大數(shù)據(jù)真的是下一個(gè)重要的技術(shù)革新的話,我們把精力關(guān)注在大數(shù)據(jù)能給我們帶來的好處,而不僅僅是挑戰(zhàn)。

二、大數(shù)據(jù)處理
周濤博士說:大數(shù)據(jù)處理數(shù)據(jù)時(shí)代理念的三大轉(zhuǎn)變:要全體不要抽樣,要效率不要,要相關(guān)不要因果。

具體的大數(shù)據(jù)處理方法其實(shí)有很多,但是根據(jù)長(zhǎng)時(shí)間的實(shí)踐,筆者總結(jié)了一個(gè)基本的大數(shù)據(jù)處理流程,并且這個(gè)流程應(yīng)該能夠?qū)Υ蠹依眄槾髷?shù)據(jù)的處理有所幫助。整個(gè)處理流程可以概括為四步,分別是采集、導(dǎo)入和預(yù)處理、統(tǒng)計(jì)和分析,以及挖掘。

采集

大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫(kù)來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫(kù)來進(jìn)行簡(jiǎn)單的查詢和處理工作。比如,電商會(huì)使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)MySQL和Oracle等來存儲(chǔ)每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫(kù)也常用于數(shù)據(jù)的采集。

在大數(shù)據(jù)的采集過程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬(wàn)的用戶來進(jìn)行訪問和操作,比如火車票售票和淘寶,它們并發(fā)的訪問量在峰值時(shí)達(dá)到上百萬(wàn),所以需要在采集端部署大量數(shù)據(jù)庫(kù)才能支撐。并且如何在這些數(shù)據(jù)庫(kù)之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。

導(dǎo)入/預(yù)處理

雖然采集端本身會(huì)有很多數(shù)據(jù)庫(kù),但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫(kù),或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡(jiǎn)單的清洗和預(yù)處理工作。也有一些用戶會(huì)在導(dǎo)入時(shí)使用來自Twitter的Storm來對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來滿足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。

導(dǎo)入與預(yù)處理過程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。

統(tǒng)計(jì)/分析

統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫(kù),或者分布式計(jì)算集群來對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC 的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。

挖掘

與前面統(tǒng)計(jì)和分析過程不同的是,數(shù)據(jù)挖掘一般沒有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計(jì)算,從而起到預(yù)測(cè)(Predict)的效果,從而實(shí)現(xiàn)一些別數(shù)據(jù)分析的需求。比較典型算法有用于聚類的K-Means、用于統(tǒng)計(jì)學(xué)習(xí)的SVM和用于分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。

該過程的特點(diǎn)和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計(jì)算涉及的數(shù)據(jù)量和計(jì)算量都很大,還有,常用數(shù)據(jù)挖掘算法都以單線程為主。



產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 二維碼 在線交流

掃一掃訪問手機(jī)商鋪

對(duì)比框

在線留言