西門子CPU模塊6ES7315-2EH14-0AB0
什么是節(jié)點(diǎn)法
1 .方法
任選電路中某一節(jié)點(diǎn)為參考節(jié)點(diǎn),其他節(jié)點(diǎn)與此參考節(jié)點(diǎn)間的電壓稱為“節(jié)點(diǎn)電壓"。節(jié)點(diǎn)法是以節(jié)點(diǎn)電壓作為獨(dú)立變量,對各個獨(dú)立節(jié)點(diǎn)列寫KCL電流方程,得到含(n-1)個變量的(n-1)個獨(dú)立電流方程,從而求解電路中待求量。
2.變量
(n-1)個節(jié)點(diǎn)電壓
3.方程結(jié)構(gòu)
(n-1)個KCL電流方程
4.矩陣形式
其中,Gn為節(jié)點(diǎn)電導(dǎo)矩陣,Un為節(jié)點(diǎn)電壓向量,Jn為節(jié)點(diǎn)電流源向量
5.解題步驟
選定參考節(jié)點(diǎn);
直接寫出節(jié)點(diǎn)電壓方程(實(shí)質(zhì)上是電流方程),注意自導(dǎo)總為正值,互導(dǎo)總為負(fù)值;
聯(lián)立上述方程式,求解。
6.說明
存在純電壓源支路時,可設(shè)電壓源的電流為變量,同時補(bǔ)充相應(yīng)的方程。
存在受控源時,可將受控源按獨(dú)立源處理,其后將受控源的控制量用節(jié)點(diǎn)電壓表示出來,然后移項(xiàng)。
適用于支路多、節(jié)點(diǎn)少的電路分析。
可以運(yùn)用于非平面電路
關(guān)聯(lián)矩陣與節(jié)點(diǎn)電流定律
根據(jù)第一章中介紹的圖論知識可知,實(shí)際電路結(jié)構(gòu)可用一個有向圖來具體描述。如某一電路的有向圖如圖7-2-1所示,把有向圖各節(jié)點(diǎn)和支路編號,然后依次把各支路與相應(yīng)連接點(diǎn)的連接信息用數(shù)字形式記憶下來。根據(jù)這些信息可完整描述電路的聯(lián)接關(guān)系,若把這些信息輸入計算機(jī),則計算機(jī)就會根據(jù)這些信息自動識別電路關(guān)系,并應(yīng)用基爾霍夫定律建立相應(yīng)的電路方程,進(jìn)行相應(yīng)的運(yùn)算。
圖 7-2-1
電路中支路與節(jié)點(diǎn)的連接關(guān)系可用關(guān)聯(lián)矩陣來描述。設(shè)電路的節(jié)點(diǎn)數(shù)為,支路數(shù)為b。依次給節(jié)點(diǎn)和支路編號(節(jié)點(diǎn)編號用一圓圈加以區(qū)別),然后把有向圖用一個階矩陣來表示,記為。矩陣的行對應(yīng)于有向圖的節(jié)點(diǎn),矩陣的列對應(yīng)于網(wǎng)絡(luò)的支路。中的元素作如下定義:
(7-2-1)
式中,稱為電路的節(jié)點(diǎn)—支路關(guān)聯(lián)矩陣。例如對于圖7-2-1所示的電路,可寫出關(guān)聯(lián)矩陣為:
關(guān)聯(lián)矩陣的每一列對應(yīng)于一條支路,每一支路必連接于二個節(jié)點(diǎn),且方向?yàn)橐贿M(jìn)一出。因此的每一列中只包含二個非零元素+1和-1,如上面關(guān)聯(lián)矩陣所示。如果把所有行的元素按列相加,則得到全零的行,因此矩陣的行不是彼此獨(dú)立的。對于中任一行元素可以通過把除該行以外的所有行相加并變號而獲得。
如果把的任一行劃去,剩下的矩陣為階矩陣,記作A。由上分析可知,用該新矩陣A來代替同樣能充分描述有向圖的連接關(guān)系,矩陣A稱為降價關(guān)聯(lián)矩陣,劃去的行對應(yīng)的節(jié)點(diǎn)即為參考節(jié)點(diǎn),上圖中若以節(jié)點(diǎn)④為參考點(diǎn),則其降價關(guān)聯(lián)矩陣為
在實(shí)際應(yīng)用中通常采用降價關(guān)聯(lián)矩陣形式,因此在一般敘述中往往略去“降價"二字。關(guān)聯(lián)矩陣可由給定的網(wǎng)絡(luò)有向圖得出,同樣當(dāng)給定關(guān)聯(lián)矩陣A后也可推導(dǎo)出它所代表的有向圖。
關(guān)聯(lián)矩陣A的每一行是相互獨(dú)立的,每行之間是線性無關(guān)的,A的秩等于矩陣的行數(shù)。實(shí)際上由A的元素的定義可知,關(guān)聯(lián)矩陣的每一行反映了該節(jié)點(diǎn)的電流平衡關(guān)系式。A中線性獨(dú)立的n行代表了網(wǎng)絡(luò)中個節(jié)點(diǎn)的電流平衡關(guān)系。
下面分析關(guān)聯(lián)矩陣A與支路電流,支路電壓,節(jié)點(diǎn)電位之間的關(guān)系。設(shè)網(wǎng)絡(luò)各支路電流為,支路電流方向與有向圖支路方向一致,用矩陣形式表示的支路電流列向量為。
若用關(guān)聯(lián)矩陣A左乘支路電流列向量i,可得一n行的列向量矩陣。由關(guān)聯(lián)矩陣的定義可知,該列向量中每一行的元素之和恰為離開該節(jié)點(diǎn)的支路電流與流入該節(jié)點(diǎn)的支路電流之代數(shù)和,且離開節(jié)點(diǎn)時電流為正,流入節(jié)點(diǎn)時電流為負(fù)。由基爾霍夫節(jié)點(diǎn)電流定律可知,節(jié)點(diǎn)電流代數(shù)和恒為零。因此可得A左乘i后其值為零向量,即有:
(7-2-2)
該式反映了網(wǎng)絡(luò)各節(jié)點(diǎn)的電流平衡關(guān)系,稱為矩陣形式的基爾霍夫電流定律。對于正弦穩(wěn)態(tài)交流電路分析,上式可寫為:
(7-2-3)
對于圖7-2-1所示的網(wǎng)絡(luò),設(shè)支路電流列向量為,該網(wǎng)絡(luò)的關(guān)聯(lián)矩陣已寫出,用A左乘i可得:
由式可見,的乘積列向量其實(shí)為n個節(jié)點(diǎn)的KCL方程式。
在用節(jié)點(diǎn)電壓法解題時要用到節(jié)點(diǎn)電壓與支路電壓之間的關(guān)系。下面分析節(jié)點(diǎn)電壓與支路電壓之間關(guān)系的矩陣形式。設(shè)網(wǎng)絡(luò)各節(jié)點(diǎn)電壓的列向量為,(式中為使節(jié)點(diǎn)電壓與支路電壓相區(qū)別,在下標(biāo)中用一加圈數(shù)字表示節(jié)點(diǎn)),參考節(jié)點(diǎn)的電壓為零。支路電壓列向量為。若用關(guān)聯(lián)矩陣的轉(zhuǎn)置矩陣左乘節(jié)點(diǎn)電壓列向量,可得一個b 行的列矩陣。前已指出,A中每一列只包含二個元素(若支路連接于參考節(jié)點(diǎn),則該列只包含一個元素),反映支路所連接的二個節(jié)點(diǎn),且為一正一負(fù),即支路方向離開節(jié)點(diǎn)為正,反之為負(fù)。因此與乘積的列向量第一行中只包含該支路離開節(jié)點(diǎn)的電壓與指向節(jié)點(diǎn)的電壓之差,即為該支路的支路電壓值。因此左乘的值即為支路電壓列向量u,即有:
(7-2-4)
對于正弦穩(wěn)態(tài)交流電路有:
(7-2-5)
對于圖7-2-1所示的網(wǎng)絡(luò),其節(jié)點(diǎn)電壓列向量為,用左乘,得
式(7-2-4)反映了節(jié)點(diǎn)電壓與支路電壓之間的關(guān)系
西門子CPU模塊6ES7315-2EH14-0AB0
第 3 節(jié) 一階電路的零輸入響應(yīng)
零輸入響應(yīng):電路無外加激勵,僅由動態(tài)元件的初始儲能作用所產(chǎn)生的響應(yīng),稱為零輸入響應(yīng)( zero-input response )。
一、 RC 電路的零輸入響應(yīng)
圖 5.3-1 ( a )電路, t=0 時開關(guān) S 由位置 1 撥到位置 2 ,討論換路后 時的電容電壓 、電容電流 等響應(yīng)的變化規(guī)律。
電路換路之前開關(guān) S 處于位置 1 ,直流電壓源 Us 對電容 C 充電,電路已處于穩(wěn)定狀態(tài),換路前的等效電路如圖 5.3-1 ( b )所示。 時刻,電容電壓等于直流電壓源的電壓 Us ,即
時刻,電容與電壓源斷開,與電阻 R 形成新的回路,這時的等效電路如圖 5.3-1 ( c )所示。
由換路定則得換路后電容電壓的初始值
電容電流的初始值為
圖 5.3-1 ( c )電路,由 KVL ,可得
用積分變量分離法進(jìn)行求解,得
式中,
為 RC 電路的時間常數(shù)( time constant ),當(dāng) R 的單位為Ω, C 的單位為 F 時,τ的單位是秒( s )。
時間常數(shù):時間常數(shù)是反映一階電路過渡過程進(jìn)展快慢的一個重要的參數(shù),其大小僅取決于電路的結(jié)構(gòu)和參數(shù)。τ越大,響應(yīng)衰減的速度就越慢;τ越小,響應(yīng)衰減的速度就越快。
用 表示電路換路后的響應(yīng),用 表示該響應(yīng)的初始值,則 RC 一階電路的零輸入響應(yīng)可表示為
RC 電路零輸入響應(yīng)的規(guī)律
RC 電路換路后,各處的零輸入響應(yīng)都是從初始值開始,按指數(shù)規(guī)律衰減。衰減得快慢由時間常數(shù)τ決定。
二、 RL 電路的零輸入響應(yīng)
圖 5.3-3 ( a )是 RL 動態(tài)電路。電路換路之前開關(guān) S 處于位置 1 , t=0 時開關(guān) S 由位置 1 撥到位置 2 。下面討論換路后 時的電感電流 、電感電壓 等響應(yīng)的變化規(guī)律。
時刻,電路換路之前開關(guān) S 處于位置 1 ,直流電流源 Is 對電感 L 充電,電路已處于穩(wěn)定狀態(tài),換路前的等效電路如圖 5.3-3 ( b )所示。
t=0 時,開關(guān) S 撥到位置 2 , 時,電感與電流源斷開,而與電阻 R 形成新的回路,這時的等效電路如圖 5.3-3 ( c )所示。
由換路定則得換路后電感電流的初始值為
電感電壓的初始值為
對于圖 5.3-3 ( c )電路,由 KVL 可得
采用積分變量分離法進(jìn)行求解,得
式中,稱為 RL 電路的時間常數(shù),當(dāng) R 的單位為Ω, L 的單位為 H 時,τ的單位為秒( s )。
總 結(jié)
電容、電感動態(tài)元件在電路中充電和放電的過程,實(shí)際上是動態(tài)元件與電路的能量交換過程,動態(tài)元件本身并不耗能。
圖 5.3-1 電路中,電路換路之前電容處于充電狀態(tài),電容從電壓源吸收能量并儲存起來,電路換路之后,電容又開始放電,釋放的能量被電阻 R 所消耗,零輸入響應(yīng)就是一個放電的過程。